

Supported by

Office of **ENERGY** Science

College W&M

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

I I NI

MIT

ORNL

PPPL

PSI

SNL

l odestar

"Snowflake" divertor configuration with reversed PF1B coil current **Colorado Sch Mines**

V. A. Soukhanovskii, LLNL

D. Gates, S. Gerhardt, E. Kolemen, J. E. Menard, PPPL

Advanced scenario and Control Break-out Session **NSTX Research Forum** Princeton, NJ 2 December 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching ASCR, Czech Rep **U** Quebec

"Snowflake" divertor configuration:

theory predicts many attractive edge physics features

- "Snowflake" divertor (SFD) configuration proposed and studied theoretically by D. D. Ryutov (LLNL)
 - Phys. Plasmas 14, 064502 (2007)
 - Phys. Plasmas, 15, 092501 (2008)
 - 34th EPS Conference on Plasma Phys. Warsaw, 2 6 July 2007 ECA Vol.31F, D-1.002 (2007)
 - Paper IC/P4-8 at IAEA FEC 2008
- SFD is obtained by creating a second-order poloidal null in the (lower) divertor with existing divertor coils
- Two cases SFD-plus and SFD-minus
- Predicted properties
 - Large flux expansion (*B_p*/*B* small) and long parallel connection length
 - Null-pt flux tube squeezing barrier for turbulence
 - Possibility of ELM control (increased edge magn. shear)
 - Enhanced null-point *grad B* drift (C. S. Chang's X-pt transport)

SFD-plus and SFD-minus

NSTX can make a large contribution to the novel divertor geometry development for future devices

- XP 924 (2009) Initial "snowflake" divertor studies in NSTX (0.5 day)
 - Obtained "snowflake" configurations for 100's ms
 - Nearly full detachment of divertor OSP
 - No core confinement degradation
- On-going effort in collaboration with GA and LLNL on snowflake divertor configuration control development
 - E. Kolemen's proposal in this session
- NSTX is making a unique contribution among high-power medium and large tokamaks
 - TCV has been experimenting with "snowflake" divertor
- "Snowflake" configuration is a candidate for heat flux mitigation in NSTX-U

XP 924 demonstrated near-steady-state "snowflake" divertor configurations

- Used PCS strike point (SP) control on both inner and outer SPs
- Scanned OSP between 0.44 to 0.69 m
- Best SFD was obtained with R_{OSP} ~ 0.55 m

Lawrence Livermore National Laboratory

ISOLVER code modeling shows improved "snowflake" with PF1B reversed current

 ISOLVER - predictive free-boundary axisymmetric equilibrium solver developed by J. E. Menard

- normalized pressure and current profiles and boundary shape as input
- $\ensuremath{\overline{\texttt{M}}}\xspace$ matches a specified plasma current and β ,
- computes coil currents as output

Reversed PF1B current helps in creating snowlfakelike (both "plus" and "minus") configurations

Lawrence Livermore National Laboratory

Create and use PF1B reversed current capability for improved "snowflake" configuration stability and control

- Reversed PF1B current capability is expected FY2010 mid-run, pending completion of Engineering tasks (R. Hatcher)
 - Check/test PSRTC software
 - Check/test configuration software
 - Check coil protection (hardware and software)
 - Check forces analysis
 - Perform ISTP
- Request 1 day for configuration development
 - First 0.5 day confirm predicted impact of rev. PF1B on "snowflake" divertor configuration obtained with PF1A and PF2L
 - add PF1B in flat-top to the existing "snowflake" scenario
 - Scan PF1B current between 0.5 kA and 3 kA
 - Scan OSP radius between 0.4 m and 0.58 m using PCS strike point control
 - Second 0.5 day optimize snowflake stability based on first 0.5 day
 - Add PF1B in OSP control algorithm?
 - Control OSP and X-pt instead of both ISP and OSP?